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Abstract

We analyse a switched control system with negative feedback and delayed switch-

ing. In particular, we consider the effects of small and arbitrary delays in the switching

decision function on the asymptotic dynamics of the system. In the absence of time

delay, the phase space contains a set of points which under the action of the system

flow are bounded, and trajectories rooted at these points converge to neutrally stable

pseudo-equilibria in finite time. This structure is destroyed under the introduction

of time delay. For a sufficiently small time delay, the bounded trajectories converge

to a unique small scale limit cycle attractor. This is shown by means of the so-called

delayed switching lines. For larger delay times, we observe event-collision bifurcations,

symmetry breaking bifurcations, homoclinic bifurcations and multistability. For larger

time delays, the delayed switching lines play an important role as they may be used

to determine the stability properties of limit cycle attractors. By means of the dis-

continuity mapping, we show why following an event-collision bifurcation the stability

of a limit cycle attractor may be radically altered. Our numerical test-bed model we

consider here may be used on the macroscopic scale as a model for human neuromus-

cular control during quiet standing or target tracking. It is interesting that much of

the complex dynamics we uncover here occurs in the parameter range of delay time of

around 150ms, which is a typical processing time of neurocontrol systems of healthy

human subjects during the control of, for example, quiet standing.
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1 Introduction

In recent decades much of research effort has been devoted to investigate the
dynamics of systems which are piecewise-smooth, e.g. [9, 14, 1, 13, 5, 6] among
many other works. This interest has been sparked by a wide range of applica-
bility of such systems to model, especially on the macroscopic scale, systems of
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relevance to applications in control and mechanical engineering, as well as in
biomechanics [15, 16] or neuroscience [4].

A piecewise-smooth system typically losses its smoothness properties on a
manifold, so-called switching manifold, which can be defined as a zero level
set of some function, which we term a switching function. This function acts
like a switch between differentiable vector fields. A special class of piecewise-
smooth systems are systems which are characterised by the presence of time
delay in the function which determines the switching [18, 19, 20, 11]. Such
systems naturally arise in switched control strategies where there is a deliberate
time lag between the instance when a switching manifold is crossed, and the
time when the actual switch takes place. This is the so-called “act-and-wait”
control strategy [10]. A simple example of such a strategy would be a two-step
control of a one-degree-of-freedom inverted pendulum. Let us suppose that we
wish to keep an inverted pendulum, which is being continuously perturbed, in
an upright position. It turns out that the best strategy to keep the inverted
pendulum bounded in a region around its unstable upside-down equilibrium is
by gently tapping the pendulum when it is off the vertical position by some
angle, and thus bring it back to the neighbourhood of the unstable upside-
down equilibrium. The switched control is not applied instantaneously, after
the unstable vertical position is crossed, but it is applied after certain delay
time. Introducing delay time implies that the phase space of the system is no
longer finite dimensional and to fully describe the dynamics a history segment of
a trajectory is required. However, due to the fact that the delay time is present
only in the switching function, and not in the state variable, the investigations
of system dynamics may be reduced to studies of finite dimensional maps, as it
was shown, for example, in [18].

In the paper, we consider a planar switched control model with negative
feedback and time delay in the switching function. Strictly speaking, as dis-
cussed above, the phase space of the model system is infinite dimensional due
to the presence of time delay. The proposed model system is a variation of an
act-and-wait macroscopic model of, for examples, target tracking or neuromus-
cular human balance control during quiet standing [2, 3, 12]. In particular, to
simplify the model system, we assume that the control torque is constant over
some time required to change the position and velocity so that the inverted
pendulum may be brought back inside some bounded region near the unstable
upside-down equilibrium.

The paper is outlined as follows. In Sec. 2, we describe the system of inter-
est. Then the system dynamics in the absence of time delay is investigated. In
the following Sec. 3, we present the first of the two main results of the paper.
We analyse the system in the case of introducing small time delay. We show the
existence and stability of symmetric small scale stable limit cycle of period 8τ .
In fact, the birth of the limit cycles may be viewed as a type of Hopf-like bifur-
cation occurring due to the introduction of time delay into the system. These
limit cycles undergo a symmetry breaking bifurcation. The following Sec. 4 is
devoted to investigations of the system dynamics when the assumptions under-
lying the investigations of the system for small delay time no longer hold. In
particular, we show the presence of a so-called event-collision bifurcation, pe-
riod doubling route to chaos and an event-collision scenario of a homoclinic type.
The second main result of the paper concerns the computation of the stability of
asymmetric limit cycles following the event-collision bifurcations and presented



in Sec. 4.5. From the application point of view, what is especially intriguing
is the fact that an onset of complex dynamics which we observe in the model
system occurs for time delay equal to around 0.15ms, and a characteristic delay
time of signal conduction measured in neuromotorcontrol systems of humans
is in the range 150ms [2, 3]. Sec. 5 concludes the paper and the directions for
future investigations are highlighted.

2 System description

We consider the dynamics of a hybrid model system given by

θ̇(t) = x(t),
ẋ(t) = Aθ(t) + I(t),

(1)

where

I(t) =


0 for θ(t− τ)θ̇(t− τ) < 0,

−K for θ(t− τ) ≥ 0 and θ̇(t− τ) ≥ 0,

K for θ(t− τ) ≤ 0 and θ̇(t− τ) ≤ 0,

(2)

and where A, K are some positive constants.
We are interested in investigating the dynamics in our intermittent controller

with negative feedback control. In all numerical computations, we consider phys-
iologically feasible values of the parameters with A = 8.5347, which corresponds
to h = 0.87m. Of special interest, will be the range in the variations of the neu-
ral processing delay time τ of around 150ms, which is a typical delay time of the
neuromuscular system [2, 3]. For our investigations we assume that K is set to
60% of the maximum torque generated by a falling body about the ankle joint
axis (with h = 0.87) due to the gravitational acceleration acting on the body.
In all numerical simulations presented we set K = 5.

2.1 System evolution as a concatenation of flows

Let the flow solution of the uncontrolled system (for I = 0) be denoted by φ0,
the flow solutions of the controlled system, with the control input I = ∓K, be
denoted by φ− and φ+ respectively. We may describe limit cycle solutions using
the composition of the system flows. Let φkn ◦ . . .◦φk2 ◦φk1 denote a symmetric
limit cycle solution obtained by composing a finite even number of flow segments,
say 2n (n ≥ 2), generated by φki, where k = 0, −, or +, with integer i denoting
the segment number. The system is invariant under the transformation (θ, x) 7→
(−θ,−x). This implies that if there exists an asymmetric limit cycle in the
system, it has a symmetric counterpart with every point (θ, x) on the limit cycle
replaced with −(θ, x), and with an appropriate replacement of flow segments
φ+ to φ− or vice versa.

2.2 No delay in the system τ = 0

2.2.1 Phase space topology

System (1) is easy to analyse for τ = 0. First of all, in this case parameter K
maybe scaled out and thus set to a unit value by introducing new variables θ̄ =



θ/K and ∆ = Kt. We should note that in this case, proposed control, effectively,
corresponds to changing the sign of the torque so that, should the stabilisation
be effective, the system is bound to be stabilised within some neighbourhood
of the origin. We will prove this below. For τ = 0, switched system (1) is a
Filippov type system with two perpendicular switching lines Σ1 = {θ = 0} and
Σ2 = {θ̇ = 0}. The state vector is (θ, x), where x = θ̇. We thus have vector
fields

F− =

{
x(t)

µθ(t)− 1,
F+ =

{
x(t)

µθ(t) + 1,
F0 =

{
x(t)

µθ(t),

where after rescaling t and θ, we set µ = A/K > 0. For the sake of convenience,
we do not change variables θ and t to θ̄ and ∆, respectively. Vector field F−
governs the dynamics in the region of phase space where θ ≥ 0 and θ̇ ≥ 0, F+

where θ ≤ 0 and θ̇ ≤ 0, and F0 where θθ̇ < 0. Clearly, on the switching lines
we have two vector fields which influence the dynamics, and thus we obtain
a system with a possibility of additional evolution on Σi (i = 1, 2). Define
H1(θ, x) = θ and H2(θ, x) = x, and let LFi

Hj denote the directional derivative
of function Hj in vector field Fi, where i = “+”,“-”, or “0” and j = 1, 2. If
on Σj the product of directional derivatives (LF±Hj)(LF0Hj) > 0 then on the
switching lines the trajectories switch between the incoming and outgoing flow
generated by the corresponding vector fields. By the incoming flow we mean
the flow which in forward time reaches the switching surface and the outgoing
flow is the flow which in forward time leaves the switching surface. On the
other hand, if (LF±Hj)(LF0

Hj) < 0 then there exists so-called sliding region on
Σj . In this case, the vector fields on either side of the switching surface point
towards it (or away from it) and so there exists the possibility of evolution on
the switching surface, so-called sliding evolution. Let us first consider switching
surface Σ1. Clearly, on Σ1 directional derivative LF±H1 = LF0

H1 = θ, and so
(LF±H1)(LF0

H1) > 0, which means that the system trajectories which reach
Σ1 cross the switching surface from vector field F0 to F− for positive θ, or from
F0 to F+ for negative θ. Let us now consider switching surface Σ2. On Σ2,
directional derivative LF±H1 = µθ ± 1 and LF0

H1 = µθ. Thus for θ ∈ (0, 1/µ)
or θ ∈ (−1/µ, 0), there exists so-called sliding region on Σ2, and for θ ∈ (1/µ,∞)
or θ ∈ (−∞,−1/µ) the system trajectories which reach Σ2 cross the switching
surface. By means of Filippov convex method [8], we may now define a vector
field which governs the dynamics on Σ2 within the sliding region. That is, we
have

F−0s = F− + α(F0 − F−), for θ > 0, (3)

or
F+0
s = F+ + β(F0 − F+), for θ < 0, (4)

where 0 ≤ α, β ≤ 1. We may use function α(β), together with the conditions on
the directional derivative with respect to Σ2 to determine the behaviour on Σ2.
For the sliding vector fields to lie on Σ2, we require LF−0

s
= 0 and LF+0

s
= 0 on

Σ2, which gives

0 ≤ α =
LF−H2

LF−−F0H2
≤ 1 and 0 ≤ β =

LF+H2

LF+−F0H2
≤ 1.



We then obtain

0 ≤ α = −(µθ − 1) ≤ 1 and 0 ≤ β = µθ + 1 ≤ 1.

Both these inequalities are satisfied. The first one for θ ∈ (0, 1/µ) and the latter
for θ ∈ (0,−1/µ). Since LF−−F0

H2 = −1 < 0, it implies LF−H < 0 for θ ∈
(0, 1/µ), and the existence of so-called attracting sliding on Σ2. Equivalently,
since LF+−F0

H2 = 1 > 0, it implies LF+
H2 > 0 for θ ∈ (−1/µ, 0) and, again,

the existence of attracting sliding on Σ2. Substituting the values of α, β into
the equations for sliding vector fields, we obtain

F−0s = F+0
s =

{
x

0,

which is a zero vector since, by definition, on Σ2 we have x = 0. Based on
the above description of the phase space, we may now determine the asymp-
totic dynamics of the system, which is mostly determined by the position of
the equilibria of vector fields F±. It is easy to verify that these equilibria are
equal to x∗F±

= ∓A−1B = ∓(1/µ, 0)T , where subscripts “F±” correspond to
vector fields F+ and F− respectively. Obviously, both equilibria have the same
eigenvalues and eigenvectors, with the eigenvalues equal to λp/m = ±√µ, and
the corresponding eigenvectors x̄± = (1,±√µ)T . These equilibria are all of
a saddle type, and as they lie on the switching line Σ2 we will term them as
pseudo-saddles. Moreover, pseudo-saddle F ∗− has the eigenvectors in the part of

the phase space where θ > 0 and θ̇ > 0. Equivalently pseudo-saddle F ∗+ has the

eigenvectors in the part of the phase space where θ < 0 and θ̇ < 0. We should
note that there is also a pseudo-saddle at the origin, and it corresponds to vector
field F0. This pseudo-saddle has the same stable eigenvector, corresponding to
the eigenvalue λm = −√µ, as pseudo-saddles x∗F±

.

2.2.2 Asymptotic dynamics

The trajectories rooted at points in the phase space where θ̇ > 0, θ > 0 and
θ̇ ≤ −µθ + 1/µ will evolve in finite time towards Σ2 and remain on Σ2 after
reaching it. In other words, the subset of Σ2 between 1/µ > θ > 0 is a set of
pseudo-equilibria (neutrally stable). For the initial points in this quadrant, but
for which the condition θ̇ ≤ −µθ+1/µ is violated, the trajectories will converge
towards the unstable manifold of the pseudo-saddle of F− and so will diverge.

Similarly, the trajectories rooted at points in the phase space where θ̇ < 0,
θ < 0 and θ̇ ≥ µθ− 1/µ will evolve in finite time towards Σ2 and remain on Σ2

after reaching it. In other words, the subset of Σ2 between −1/µ < θ < 0 is a
set of pseudo-equilibria (neutrally stable). Similarly as in the previous case, for
the initial points in this quadrant, but for which the condition θ̇ ≥ −µθ − 1/µ
is violated, the trajectories will converge towards the unstable manifold of the
pseudo-saddle of F+ and so will diverge.

Let us now consider the part of the phase space where θ < 0 and θ̇ > 0. There
are two critical sets here which separate the trajectories which remain bounded
and these which remain unbounded. These sets are given as the images of points
(−1/µ, 0) and (0, 1/µ) under flow φ0 for any t < 0. The latter is the point of
intersection of the stable manifold of the pseudo-saddle of F− with the θ̇ axis.



We will denote the first set by L(2) and the latter by U (2). All trajectories rooted
at points from this quadrant, and bounded below (with respect to |θ̇|) by L(2)

and above by U (2), will converge in finite time onto pseudo-equilibria of Σ2. On
the other hand, all trajectories rooted below L(2) or above U (2) will converge
towards the unstable manifolds of the pseudo-saddles of F± respectively.

Equivalently, let us now consider the part of the phase space where θ > 0
and θ̇ < 0. There are two critical sets here which separate the trajectories which
remain bounded and these which remain unbounded. These sets are given as the
images of points (1/µ, 0) and (0,−1/µ) under the flow φ0 for any t < 0. The
latter point is the point of intersection of the stable manifold of the pseudo-
saddle of F+ with the θ̇ axis. We will denote the first bounding set by L(4) and
the latter by U (4). All trajectories rooted at points from this quadrant, and
bounded below by L(4) and above by U (4) (with respect to |θ̇|), will converge
in finite time onto pseudo-equilibria of Σ2. On the other hand, all trajectories
rooted below L(4) or above U (4) will converge towards the unstable manifold of
the pseudo-saddle of F± respectively.

We may finally determine what is the dynamics on switching manifolds Σ1

and Σ2. Consider first switching manifold Σ2. Call the set of points on Σ2

for θ ∈ (−1/µ , 1/µ) as Σ̂. All points in Σ̂ are neutrally stable pseudo-nodes.
That is, any trajectory rooted on Σ̂ will remain on a given point in Σ̂. Also,
any trajectory which reaches Σ2 within this set, will remain in the set on a
point which it reaches. Points x∗F±

= ∓(1/µ, 0) are the aforementioned pseudo-

saddles. All points on Σ2 outside of Σ̂2 ∪ {θ± = ±1/µ} are crossing points.
That is, trajectories rooted on, or reaching, crossing points switch between
vector fields F− to F0, or F+ to F0, on this part of switching set Σ2.

Consider now switching manifold Σ1. All points on Σ1 except for the origin
and the two intersection points of the stable eigenvectors of x∗F±

with Σ1 are
crossing points. That is, the trajectories rooted or reaching crossing points of
Σ1 switch from F0 to F− or from F0 to F+ on Σ1.

3 The effect of small delay

We will now consider the dynamics of delayed system (1) and (2) under the
introduction of small delay of O(ε) in the switching. However, we will consider
the original vector fields (without rescaling). That is, we have

F τ− =

{
x(t)

Aθ(t)−K,
for θ(t− τ) ≥ 0 and θ̇(t− τ) ≥ 0,

F τ+ =

{
x(t)

Aθ(t) +K,
for θ(t− τ) ≤ 0 and θ̇(t− τ) ≤ 0,

and

F τ0 =

{
x(t),

Aθ(t),
for θ(t− τ)θ̇(t− τ) < 0.

The reason for preserving the original parameters is that, due to the introduction
of switching delay τ , the parameters affect the dynamics on different time scales
and may be thought of as being independent, and hence we cannot reduce their
number by rescaling.



We will now introduce so-called delay switching lines, which are sets in (θ, θ̇)
phase space where the actual switchings between the vector fields of the system
take place for τ > 0. As it was shown in [18], the system evolution may be
defined by considering an initial segment of the trajectory which has a finite
number of intersection points with the switching manifolds. The forward evo-
lution is then determined by considering a T− time image of these intersection
points. Hence, even though the delay system is infinite dimensional, the dy-
namics itself is finite dimensional. The necessary condition for such a reduction
is that the system trajectory intersects the switching manifold a finite number
of times in the interval [t− τ, t], where t ≥ 0 is some time instance, and τ > 0
is a fixed delay time. Let us now suppose that we want to determine the dy-
namics of system trajectories which, within any time interval [t− τ, t], cross the
switching manifolds only ones. We may determine the dynamics by considering
the aforementioned delay switching lines, which are τ -time images of switching
lines Σ1 and Σ2 under flows φi, where i = 0,±.

3.1 Delay switching points

Consider an arbitrary, but fixed delay time τ > 0. Let P0 = (0, θ̇0) be some
point on Σ1. Let us assume that there is no other crossing of Σi (i = 1, 2) by
a system trajectory rooted at P0 during the time interval [−τ, τ ]. Using pairs
(θ(τ), θ̇(τ)), which are τ images of any initial point P0 under flow φ0, the actual
switching points between the vector fields are given by

θ(τ) =
θ̇0√
A

sinh(
√
Aτ), θ̇(τ) = θ̇0 cosh(

√
Aτ),

where θ̇0 ∈ R. Assuming τ = O(ε), to leading order in τ , we may approximate
these switching points by

θ(τ) = θ̇0τ, θ̇(τ) = θ̇0,

and so the set
Σεφ0

= {(θ, θ̇) ∈ R2 : τ θ̇ = θ},

lies in some sufficiently small neigbourhood of the points where the actual
switchings between vector fields F τ0 and F τ± take place (for sufficiently small
delay times).

Similarly, let P1 = (0, θ̇0) be some point on Σ2. Let us assume that there
is no other crossing of Σi (i = 1, 2) by a system trajectory rooted at P1 during
the time interval [−τ, τ ]. Using pairs (θ(τ), θ̇(τ)), which are τ images of any
initial point P1 under flow φ±, the actual switching points between the vector
fields are given by

θ(τ) = θ0 cosh(
√
Aτ), θ̇(τ) =

Aθ0 ±K√
A

sinh(
√
Aτ).

Assuming τ = O(ε), to leading order in τ , we may approximate the switching
points as

θ(τ) = θ0, θ̇(τ) =
Aθ0 ±K√

A

√
Aτ,



and so the set
Σεφ±

= {(θ, θ̇) ∈ R2 : Aθτ ±Kτ = θ̇},

approximates the set of points where the actual switchings between vector fields
F τ± and F τ0 take place (for sufficiently small delay times).

3.2 Small scale limit cycles. Numerical results

As it was shown in [18], the introduction of a delay in the switching function de-
stroys the possibilities of sliding and hence the neutrally stable pseudo-equilibria
which lie on Σ2. From the expressions which give Σεφi

(for i = 0, ±), it follows

that, if there exist symmetric, small scale limit cycles, value |θ̇| on these limit
cycles, at the points of switching, grows linearly in τ since |θ̇| = Kτ to leading
order in τ , and so it is of O(ε) for τ sufficiently small. Value |θ| on these limit
cycles, at the points of switching, grows quadratically in τ since |θ| = Kτ2,
and so it is of O(ε2) for τ sufficiently small. This is schematically depicted in
Fig. 1. In Fig. 1(a), we depict the values of the θ component of a periodic point
on the limit cycle attractor at the point of switching (in the part of the phase
space where θ > 0, θ̇ > 0) as a function of delay time τ . We note that the nu-
merical values approach asymptotically the theoretical value of Kτ2. The other
parameters are set to A = 8.5347 and K = 5. In Fig. 1(b) the θ̇ component is
depicted. Again, the expected asymptotic convergence of the θ̇ component at
the point of switching, to the analytical value of Kτ , is clearly discernible.

3.3 Existence and stability of small scale limit cycles

The existence of delayed switching lines may be used to prove the existence
and stability of small scale symmetric limit cycles, which are born due to the
introduction of the switching delay. That is, we may derive a return map from
Σ1 (or Σ2) back to itself, for some set of points for which the switchings take
place on the delay switching lines described in the former section.

Consider switching line Σ1 and some point (0, θ̇0) ∈ Σ1 with the history
segment φ0((0, θ̇), t), where t ∈ [−τ, 0] and with no intersection points of the
history segment with Σi (i = 1, 2). It follows that the switch to flow φ− will
take place after the delay time τ . There is a similar situation for an initial
point on Σ2. That is, for some point (θ0, 0) ∈ Σ2 with the history segment
φ−((θ0, 0), t), where t ∈ [−τ, 0] and with no intersection points of the history
segment with Σi (i = 1, 2), the subsequent switch to flow φ0 will take place
after time τ .

Denote by φτi (i = 0, −) a τ image of some point under the action of flow φi
and by P so-called projection mappings, which are mappings that map points in
some sufficiently small neighbourhood of the switching lines onto the switching
lines following the flow. It then follows that if there exists a fixed point of the
return map

π : (0, θ̇0) 7→ −Pφ0
(φτ0(φτ−(Pφ−(φτ−(φτ0(0, θ̇0))))))

for some point (0, θ̇0) ∈ Σ1, then there exists a small scale symmetric limit cycle
in the system, and the period of the limit cycle is 8τ .

Let us denote points P0 to P6 as follows: (a) point P0 = (0, θ̇0) is an initial
point; (b) point P1 = (θ1, θ̇1) is a point of switching between flow φ0 and φ−



Figure 1: Scaling of the of small scale limit cycle attractors versus delay time
τ at the switching points on the delay switching lines for θ > 0 and θ̇ > 0, and
with the parameters set to A = 8.5347, K = 5. (a) Scaling of the θ component,
and (b) scaling of the θ̇ component.



on the delay switching line after there elapses time τ ; (c) point P2 = (θ2, θ̇2) is
a τ image of P1, which lies in the neighbourhood of Σ2; (d) point P3 ∈ Σ2 is
an image of P2 along the trajectory of flow φ−; (e) point P4 is a τ image of P3

under the action of φ− and so it again lies on the delay switching line; point P5

is a τ image of P4 and it lies in some neighbourhood of Σ1; (f) finally P6 ∈ Σ1

is an image of P5 along the trajectory of flow φ−.
We will now obtain an explicit expression for π to determine the existence

and stability of small scale limit cycles. We will do so by expanding the flows
in τ . We thus have:

P1 = φτ0(0, θ̇0) =

{
θ̇0τ + A

6 θ̇0τ
3 +O(ε6),

θ̇0 + A
2 θ̇0τ

2 +O(ε5),

where O(ε5) denote terms of the fifth order and higher (we interpret similarly
O(ε6)). Thus to leading order in ε, P1 = (θ̇0τ, θ̇0) where θ̇0τ = O(ε2) and
θ̇0 = O(ε). In what follows we will express the subsequent points so that the θ
component is expressed up to and including combined terms of O(ε2) and the
θ̇ component will include terms of O(ε3). We then have

P2 = φτ−(P1) =

{
2θ̇0τ − Kτ2

2 +O(ε4),

θ̇0 + θ̇0τ
2 +Aθ̇0τ

2 −Kτ − 1
6AKτ

3 +O(ε5),

P3 = Pφ−(P2) =

{
2θ̇0τ − Kτ2

2 +O(ε4),

0,

P4 = φτ−(P3) =

{
2θ̇0τ −Kτ2 +O(ε4),

2Aθ̇0τ
2 −Kτ − 2

3AKτ
3 +O(ε5),

P5 = φτ0(P4) =

{
2θ̇0τ − 2Kτ2 +O(ε4) = 2τ(θ̇0 −Kτ) +O(ε4),

4Aθ̇0τ
2 −Kτ − 13

6 AKτ
3 +O(ε5),

P6 = Pφ0(P5) =

{
0,

4Aθ̇0τ
2 −Kτ − 13

6 AKτ
3 +O(ε5).

We then have that the return map π : θ̇0 7→ θ̇0 is given by

π : f(θ̇0) = Kτ +
13

6
AKτ3 − 4Aθ̇0τ

2 +O(ε5). (5)

From the above functional expression for return map π, we may obtain the con-
dition for the existence of a small scale periodic solution. We seek to obtain θ̇0 as
a power series in τ , where θ̇0 ∈ Σ1 is a periodic point on the limit cycle. Invert-
ing the power series, we find that, to leading order in τ , θ̇0 = Kτ . The stability
of the limit cycle can be determined by computing the derivative df/dθ̇0, which
is df/dθ̇0 = −4Aτ2. Clearly, for τ sufficiently small |df/dθ̇0| = |4Aτ2| < 1 and
hence the limit cycle is locally stable. Moreover, since the stability of the limit
cycle is given by |df/dθ̇0|2 then, for sufficiently small τ , it may be regarded as
being locally superstable since τ is close to 0.



Figure 2: Scaling of the nontrivial Floquet multiplier corresponding to the small
scale limit cycle attractor versus time delay. Asymptotic (dashed line) and
numerical (solid line) results are shown.

3.4 Symmetry breaking bifurcation

In Fig. 2, we depict the value of the non-trivial Floquet multiplier of the limit
cycle against delay time τ . Both, the numerical and analytical values, the
latter computed from expression (5) for the Poincaré map, are shown. From
presented numerical results, it can be seen that a symmetry breaking bifurcation
is expected to take place for τ ≈ 0.15, where the multiplier takes the value equal
to −1. From expression (5) by computing df/dθ0, we can approximate that the
value of the delay time for which the Floquet multiplier is equal to −1 is equal
to τ = 0.1711. The above discrepancy is expected due to the fact that the
Floquet multiplier approximated from expression (5) is based on asymptotic
analysis for τ sufficiently small. We found that for τ = 0.15015 the nontrivial
Floquet multiplier is equal to −0.9963. Corresponding periodic orbit is shown in
Fig.3(a). Thus the limit cycle, under further small variation of delay parameter
τ will undergo a symmetry breaking bifurcation, and a pair of stable asymmetric
limit cycles will be born in the bifurcation. Further variation of the bifurcation
parameter leads to a fold bifurcation for τ ≈ 0.15065. An asymmetric stable
limit cycle for τ = 0.15065, that is “before” the fold bifurcation takes place, is
depicted in Fig. 3(b). The nontrivial Floquet multiplier of the depicted limit
cycle attractor has the value λ = 0.9991.

4 Arbitrary delay time

4.1 Event-collision leading to the birth of asymmetric limit
cycle attractors

In this section, we numerically describe an event-collision bifurcation, which
leads to the creation of a pair of asymmetric limit cycle attractors. This bifur-
cation, in the current case, is characterised by the fact that at the event-collision,



Figure 3: (a) An example of a symmetric limit cycle attractor for delay time set
to τ = 0.15015 and (b) and example of an asymmetric small scale limit cycle
attractor after symmetry breaking bifurcation; delay time set to τ = 0.15065.
A dashed box and a dashed line are placed in the figure to highlight broken
symmetry.



Figure 4: An asymmetric limit cycle attractor in intermittent control system
(1) for A = 8.5347, K = 5 and τ = 0.15058.

Figure 5: An asymmetric limit cycle attractor in intermittent control system
(1) for A = 8.5347, K = 5 and τ = 0.1508.



Figure 6: (a) Time series plots of the angular position and velocity components
of an asymmetric limit cycle attractor in intermittent control system (1) for
A = 8.5347, K = 5 and τ = 0.1508 and (b) zoom depicting the segments
between crossing of the θ and θ̇ axes by the system’s flow.

Figure 7: (a) Period-two limit cycle attractor in intermittent control system
(1) for A = 8.5347, K = 5 and τ = 0.1545, and (b) a chaotic attractor for
τ = 0.1549.

the bifurcating limit cycle is built of a trajectory segment which has the dura-
tion of delay time τ , and this segment joins the switching lines {θ̇(t) = 0} and
{θ(t) = 0}. Such a limit cycle is born at τ∗ = 0.15058 (see Fig. 4). In fact,
we observed an event-collision bifurcation of a saddle-node type. In Fig. 5, we
depict an asymmetric limit cycle attractor for τ = 0.1508. In the figure, we can
discern a short segment of trajectory, generated by flow φ+, existing past set
{θ(t) = 0}. In Fig. 6(a), we depict time series plots of θ and x = θ̇ states. In
the zoom depicted in Fig. 6(b), we can see that the time taken by the flow to
reach the θ̇ axis from the θ axis is approximately equal to ∆t = 0.1371, which
is close to delay time τ = 0.1508.

4.2 Period-doubling bifurcation

Increasing bifurcation parameter τ leads to a period-doubling bifurcation of the
two asymmetric limit cycle attractors. We observe a period-doubling cascade
which leads to the onset of chaos. A period-two attractor is depicted in Fig. 7(a)
for τ = 0.1545. Increasing τ to τ = 0.1549 leads to chaotic dynamics, which is
depicted in Fig. 7(b). We should note here that the birth of chaos as described
here is triggered by a “classical” period-doubling route to chaos, and hence we



Figure 8: A period-three limit cycle attractor for τ = 0.1551 implying the
existence of chaos.

Figure 9: A chaotic attractor for τ = 0.156.

expect periodic windows. Indeed a period-three attractor has been observed for
τ = 0.1551, see Fig. 8.

4.3 Homoclinic event-collision bifurcation

The chaotic attractor undergoes a homoclinic event-collision bifurcation. In
this scenario, the time required by flow φ− to move from a point of crossing
set {θ̇ = 0} to reach the stable manifold of the saddle point is exactly equal to
delay time τ . This bifurcation leads to merging of the two asymmetric chaotic
attractors. An example of a chaotic attractor existing for τ = 0.156 is depicted
in Fig. 9.

4.4 Multistability

From the results presented in Sec. 3.4 and Sec. 4.1, it follows that there is a
range of parameter values where we observe a co-existence of attractors. Namely,
“after” the event collision at τ = 0.15058 and “before” the fold bifurcation at
τ = 0.15066. An example of two stable limit cycles existing in this range of
parameters is shown in Fig. 10 (τ = 0.15065). The symmetric counterparts of
these two limit cycles are also present in the system. We should note here that
there are possible other ranges of parameter values where multistability is also
present.



Figure 10: Co-existing two stable limit cycle attractors for τ = 0.15065.

4.5 Analysis

Nonsmooth fold To describe the first event-collision bifurcation, we may use
the composition of linear maps and the result of the normal form derivation of
the event-collision bifurcation given in [18]. Consider now a sufficiently small
neighbourhood, say U , of periodic point EC∗ = (θ∗, x∗) ∈ Σ1. To describe the
system dynamics for all points (θ, x) from some sufficiently small neighbour-
hood, say U of (θ∗, x∗) we may derive a map U 7→ U . In Fig. 4, we denote by
Ul the set of points in U which in reverse time, under the action of flow φ+,
cross Σ2, and the forward time-τ images of these points, which now lie on Σ2,
under the flow φ+ do not lie to the right of Σ1. Equivalently, in Fig. 4, we
denote by Ur the set of points in U which in reverse time, under the action of
flow φ+, reach Σ2, and the forward time-τ images of these points, which now
lie on Σ2, under the flow φ+ lie to the right of Σ1. A linear approximation of
a map, say P , which maps U 7→ U , can now be given as a composition of the
solutions of the variational equations for the trajectory segments generated by
flows φi (i = ±, 0) and the discontinuity mappings which take into account the
presence of switching events. We also need to include in the map composition
the discontinuity normal form map for the event-collision bifurcation. In our
case, this leads the following linear approximation for P :

P ((θ, x)) = (θ∗, x∗)T +

{
Â(θ − θ∗, x− x∗)T +O(||x||2) for (θ, x) ∈ Ur,
Ā(θ − θ∗, x− x∗)T +O(||x||2) for (θ, x) ∈ Ul,

where x = (θ, x)T .
Matrices Â and Ā have the following form

Â = ∂φ+(x′3, τ)

[
I −

F τ+h
d
x

hdxF
τ
+

]
∂φ+(x3, t

∗
3)∂φ0(x′2, τ)[

I − F τ0 h
p
x

hpxF τ0

]
∂φ0(x2, t

∗
2)∂φ−(x1, τ)

[
I −

F τ−h
d
x

hdxF
τ
−

]
∂φ−(x1, t

∗
1)∂φ0(x∗, τ)LM1,



and

Ā = ∂φ+(x′3, τ)

[
I −

F τ+h
d
x

hdxF
τ
+

]
∂φ+(x3, t

∗
3)∂φ0(x′2, τ)[

I − F τ0 h
p
x

hpxF τ0

]
∂φ0(x2, t

∗
2)∂φ−(x1, τ)

[
I −

F τ−h
d
x

hdxF
τ
−

]
∂φ−(x1, t

∗
1)∂φ0(x∗, τ)LM2,

where

LM1 = I − F τ0 h
p
x

hpxF τ+
and LM2 = I − F τ0 h

p
x

hpxF τ0
.

In expression above LM1 and LM2 are matrices representing the leading order
term of the discontinuity normal form map for the event-collision bifurcation

[18]. The matrices

[
I − F τi h

k
x

hkxF
τ
i

]
(i = ±, 0, k = p, d) are linear parts of the

discontinuity mappings for transversal switchings of the flows solutions, and
∂φ(, ) represents a solution of the variational equation of the flow solutions.
Thus in our case, we have

∂φi(x, t) =

(
cosh(

√
At) 1√

A
sinh(

√
At)

√
A sinh(

√
At) cosh(

√
At)

)
,

i = ±, 0. Finally, hpx and hdx may be represented as vectors normal to Σ1 and
Σ2 respectively, and the relevant quantities in the expression above may be
computed using the standard rules of matrix multiplication.

Since the system is piecewise-linear, we may find the event-collision bifurca-
tion point using explicit flow solutions. Writing down a set of five equations for
the unknown periodic point (θ∗, x∗) (θ∗ = 0 on Σ1) and times τ , t1, t2 and t3 (see
the Appendix for details), we found x∗ = 0.70782, τ = 0.15058, t1 = 0.21627,
t2 = 0.43255 and t3 = 0.06569. We found that at the event collision bifurcation
the non-trivial Floquet multiplier corresponding to the limit cycle solution is
equal to 1.00 and hence we observe an event collision bifurcation of the fold
type. In our case LM1 and LM2 are the same due to the structure of the sys-
tem, which, generically, is not the case at the event-collision bifurcation. Thus,
generically, at an event-collision bifurcation a piecewise-linear map describes the
dynamics.

Stability of limit cycles past the event-collision For the parameter values
past the event-collision bifurcation (in our case it means for τ > 0.15058), to
determine the stability of the limit cycle attractor born in the nonsmooth fold
bifurcation, we need a composition of linear maps for the different segments of
the limit cycle attractor which make up the whole invariant orbit. Consider a
neighbourhood of a periodic point (θ∗, x∗) on the limit cycle, with θ∗ > 0 and
x∗ > 0 where the flow switches between φ0 and φ−. The attractor, say LC,
may then be described by a composition of the following flows

LC : φ0 ◦ φ+ ◦ φ0 ◦ φ−.

The linearisation about (θ∗, x∗) may be obtained by considering a composition
of linear maps derived from the variational equations for the flows φ± and φ0,



combined together the discontinuity maps which take into account the effects
of switchings. Let

∂φi(x, t)

denote the variational matrix for a specific flow segment φi(x, t) over some time
t, for i = 0, ±. Consider now a sufficiently small neighbourhood, say U , of the
point (θ∗, x∗). A linear approximation of a map, say P , which maps U 7→ U ,
can be given by

P ((θ, x)) = (θ∗, x∗)T +A(θ − θ∗, x− x∗)T +O(||x||2),

where x = (θ, x)T . We write A = A3A2A1 to highlight a subtle difference in the
flow composition and the effect of the event-collision bifurcation on the stability
of the limit cycles away from the bifurcation point. We have

A1 = ∂φ0(x′2, τ)

[
I − F τ0 h

p
x

hpxF τ0

]
∂φ0(x2, t

∗
2)∂φ−(x1, τ)

[
I −

F τ−h
d
x

hdxF
τ
−

]
∂φ−(x∗, t∗1),

A2 =

[
I −

(F τ+ − F τ0 )hdτx
hdτx F

τ
+

]
∂φ+(x4, t4)

[
I −

F τ+h
p
x

hpxF τ+

]
∂φ+(x′3, τ−t4)

[
I −

F τ+h
d
x

hdxF
τ
+

]
∂φ+(x3, t

∗
3),

and
A3 = ∂φ0(x′4, τ − t4).

Let us now look in closer detail at the expressions for matrices A1, A2 and A3.
Matrix A1 takes into account the effects of the variation from the initial point
(θ, x∗) until the switching point from flow φ0 to φ+ takes place (for θ < 0 and
θ̇ < 0). This is a standard variational matrix containing the effects of switchings
and it contains, correspondingly, the same terms as variational matrices Ā(Â).
If we now consider matrix A2, the first two terms on the right have counterparts
in Ā(Â). However, the segment of the trajectory building-up a limit cycle from
Σ2 to the next switching, which will take place after time τ but, also, after
crossing of Σ1, has to be broken down into two parts. One part is the part from
Σ2 to Σ1 with the duration of τ − t4 and the second part is the part from Σ2 to
the actual switching point, and so three variational matrices are obtained. And
here comes a subtle effect of the event collision on the composed variational
matrix. The leftmost term of A2 contains term[

I −
(F τ+ − F τ0 )hdτx

hdτx F
τ
+

]
. (6)

This term captures the effect which has the switching between flows, after cross-
ing of Σ1, on the variational matrix for points crossing Σ1. We should note that
the time from crossing Σ1 to the next switching to flow φ− must be exactly
equal to τ , and hence the combined time of the evolution of flows φ+ and φ0
must be equal to τ , and so the discontinuity map which captures the effects
of switching on the variational matrix must take zero time. This additional
variation is computed with respect to the delayed switching line, which is a τ
image of Σ2 under the action of flow φ+. Vector hdτx = [1, −

√
A/ tanh(

√
Aτ)]

is a vector normal to the delayed switching line.
Matrix A3 is a standard variational matrix. However, from the presented

matrix composition, it is clear that the effect of the event-collision on the limit



cycle may be significant even for a slight change of the delay time τ which,
effectively, translates onto an additional variational matrix (6). Indeed, we
observed this to be the case, and when we computed the variational matrices
A1, A2 and A3 for τ = 0.151, we found that the non-trivial Floquet multiplier
for the asymmetric limit cycle attractor born in the event-collision bifurcation
is equal to −0.45052, which is a significant variation from the value of 1 for
such a small range of parameter variation – from τ = 0.15058 to τ = 0.151.
Further variation of τ leads to a standard period-doubling bifurcation and a
period-doubling route to chaos, which may be verified by computing the values
of the non-trivial Floquet multipliers for the limit cycles. The analysis presented
in this section further clarifies the observed numerical results, and it explains
why there is such a drastic change in the stability of the limit cycle attractors
past the event-collision bifurcation.

5 Conclusions

In the paper, we consider a switched control system with a time delay in the
switching function, which we considered to be a macroscopic model of human
neuromotorcontrol system for diverse tasks such as, for example, target tracking
or human balance control [2, 3, 12]. We first investigate the system dynamics
in the absence of time delay. We find a set of neutrally stable pseudo-equilibria,
which are Ω−limit sets for all bounded trajectories of the system. The phase
space is divided into parts where, in forward time, system trajectories tend to
these pseudo-equilibria, and parts where the trajectories are unbounded. It is
the stable and unstable manifolds of the pseudo-saddles which divide the phase
space into different parts.

Then in Sec. 3, we investigate the effect of introducing small time delay in
the switching function. By means of asymptotic analysis, we prove the existence
and stability of small scale limit cycle attractors which are born when the delay
time is switched on. The so-called delay switching lines are crucial for their
existence. Their presence allows to reduce the analysis of the system dynamics
to the analysis of finite dimensional maps. In particular, we show that the period
of the small scale symmetric limit cycle attractors is dependent of the switching
lines and constrained by the delay time, and for delay time τ the period is equal
to 8τ . Then in Sec. 4, we show the presence of the so-called event-collision
bifurcation scenario of the fold type, which is followed by a period-doubling
route to chaos. The presence of multiple number of stable limit cycle attractors
are also shown. Finally, a homoclinic event-collision bifurcation is also shown.
By means of local analysis, we show the particular effect that the event-collision
bifurcation has on the stability of a limit cycle attractor born in the bifurcation.
In particular, we show that even small changes of the parameter (delay time)
may significantly change the stability of the limit cycle attractor because an
additional discontinuity mapping has to be included to account for an event-
collision bifurcation for parameter values “after” (“before”) the bifurcation.

The analytical and numerical findings of the paper seem to have important
implications in the context of human neuromotorcontrol systems. We discover
much complexity in the system - bifurcations, multistability and period-doubling
route to chaos in the range of the delay time of around 150ms. At the same
time, the typical delay time of neural processing in humans during different



tasks such as, for example, the control of posture during quiet standing is in the
range of 150ms. We conjecture that pathologies of human neuromotorcontrol
system are related to the loss of the observed dynamical complexity for this
range of neural processing delay. The reason behind such a conjecture is that
in biomechanics literature complexity measures such as sample entropy (from
information theory) seem to signify that higher complexity of experimental data
corresponding to some control tasks reflect healthy neuromuscular control sys-
tem [7, 17]. Future experimental work related to the presented macroscopic
model is directed towards experimental validation of proposed hypothesis. We
will seek to find the evidence that such a structure can be discerned in neu-
romotorcontrol systems, especially in the context of the act-and-wait control.
The theoretical work will further explore the importance of delay switching lines
on system dynamics, and their effect on the stability of limit cycle attractors
following event-collision bifurcations. In terms of relevance to applications, it
is also interesting to investigate further the relationship between the period of
small scale limit cycle attractors, the delay time and the stability. In our case,
the period of small scale limit cycle attractors was equal to 8τ (with τ being the
delay time), and for sufficiently small delay time the limit cycle is characterised
by the value of the non-trivial Floquet multiplier close to zero.

Appendix

To detect numerically the limit cycle at the event-collision, we us the explicit
flow solutions. Namely, we have

φ0 :

θ(t) = θ̇0√
A

sinh(
√
At) + θ0 cosh(

√
At)

θ̇(t) = θ̇0 cosh(
√
At) +

√
Aθ0 sinh(

√
At),

φ+ :


θ(t) = Aθ0 +K

A cosh(
√
At) + θ̇0√

A
sinh(

√
At)− K

A

θ̇(t) = θ̇0 cosh(
√
At) + Aθ0 +K√

A
sinh(

√
At),

and

φ− :


θ(t) = Aθ0 −K

A cosh(
√
At) + θ̇0√

A
sinh(

√
At) + K

A

θ̇(t) = θ̇0 cosh(
√
At) + Aθ0 −K√

A
sinh(

√
At).

We consider the four trajectory segments which make up the limit cycle attrac-
tor, and denote initial points for each trajectory segment after the colon mark.
Thus, we have

φ0 : (0, θ̇1), φ− : (θ2, θ̇2), φ0 : (θ3, θ̇3) and φ+ : (θ4, θ̇4).



Define

θ2 =
θ̇1√
A

sinh(
√
Aτ),

θ̇2 = θ̇1 cosh(
√
Aτ),

θ3 =
Aθ2 −K

A
cosh(

√
A(t1 + τ)) +

θ̇2√
A

sinh(
√
A(t1 + τ)) +

K

A
,

θ̇3 = θ̇2 cosh(
√
A(t1 + τ)) +

Aθ2 −K√
A

sinh(
√
A(t1 + τ)),

θ4 =
θ̇3√
A

sinh(
√
A(t2 + τ)) + θ3 cosh(

√
A(t2 + τ)),

θ̇4 = θ̇3 cosh(
√
A(t2 + τ) +

√
Aθ3 sinh(

√
A(t2 + τ)).

We can now write a set of five equations for the five unknown quantities t1, t2,
t3, τ and θ̇1. We get

0 =
Aθ4 +K

A
cosh(

√
A(t3 + τ)) +

θ̇4√
A

sinh(
√
A(t3 + τ))− K

A
, (7)

θ̇1 = θ̇4 cosh(
√
A(t3 + τ)) +

Aθ4 +K√
A

sinh(
√
A(t3 + τ)), (8)

0 = θ̇2 cosh(
√
At1) +

Aθ2 −K√
A

sinh(
√
At1), (9)

0 =
θ̇3√
A

sinh(
√
At2) + θ3 cosh(

√
At2), (10)

0 = θ̇4 cosh(
√
At3) +

Aθ4 +K√
A

sinh(
√
At3). (11)
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